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Abstract
The dynamics of the ring dark soliton in a Bose–Einstein condensate (BEC)
with thin disc-shaped potential is investigated analytically and numerically.
Analytical investigation shows that the ring dark soliton in the radial
non-symmetric cylindrical BEC is governed by a cylindrical Kadomtsev–
Petviashvili equation, while the ring dark soliton in the radial symmetric
cylindrical BEC is governed by a cylindrical Korteweg–de Vries equation. The
reduction to the cylindrical KP or KdV equation may be useful to understand the
dynamics of a ring dark soliton. The numerical results show that the evolution
properties and the snaking of a ring dark soliton are modified significantly by
the trapping.

PACS numbers: 03.75.Fi, 03.65.Ge

1. Introduction

The ring dark soliton was first introduced in optics by Kivshar and Yang in [1] and was studied
theoretically [2–4] and experimentally [5, 6]. The introduction of the ring dark soliton is based
on the evolution properties of the dark stripe solitons. It is well known that, in two dimensions,
the dark stripe solitons can be formed and become unstable against transverse snaking [7].
However, the instability band of the dark stripe solitons, characterized by a maximum
perturbation wavenumber Qmax, may be suppressed by bending a dark stripe to close it
into an annulus of length L < 2π/Qmax [1]. On the other hand, the soliton is expected to have
a circular symmetry and the stable ring dark soliton can be observed. In a recent work [8],
the concept of a ring dark soliton in Bose–Einstein condensates (BEC) is first introduced and
the ring dark soliton in a BEC with disc-shaped trap is studied, and predicts the existence of
both oscillatory and stationary ring dark solitons. The numerical results show that instabilities
gradually set in and, as a result, a shallow ring dark soliton slowly decays, while the deeper
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ones develop the snake instability, splitting into ring shaped vortex arrays. The dominant
source of the instability is due to the fact that the ring shaped soliton carries a definite nonzero-
angular momentum, which results in the growth of azimuthal perturbations. However, the
dynamics of the nonlinear evolution of ring dark soliton remains an open question, especially
in BEC. It is the aim of this paper to discuss the dynamics of a ring dark soliton in a BEC
with disc-shaped trap. By using a perturbation method, we show that the ring dark soliton
in the radial non-symmetric cylindrical BEC (i.e., with azimuthal effect) is governed by a
cylindrical Kadomtsev–Petviashvili (cylindrical KP) equation, while the ring dark soliton
in the radial symmetric cylindrical BEC (i.e., without azimuthal effect) is governed by a
cylindrical Korteweg–de Vries (cylindrical KdV) equation.

2. The governing equations

The evolution of the weakly coupled BEC at low temperature is governed by the time-
dependent Gross–Pitaevskii (GP) equation with the external disc-shaped potential V (r)
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and the disc-shaped trap has the form
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∂y2 , r
2 = x2 + y2. ωr and ωz are frequencies of the trap in the radial r and

axial z direction, respectively. Wavefunction �, time t and variables (r, z) are normalized by(
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/
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z and az respectively, where az = [h̄/(mωz)]1/2,Q = 4πNas/az with as the
s-wave scattering length, m the mass of the atom and N the number of atoms in BEC.

In order to investigate the dynamics of the ring solitary wave in BEC, we consider
the solitary wave travelling along the radial direction and with transverse effect, i.e.,
∇2 = ∂2

∂r2 + 1
r2

∂2

∂θ2 + 1
r

∂
∂r

. Here we consider the excitation created in the BEC with very
thin disc-shaped trap, i.e., the case in which the trapping potential in the r direction is much
weaker than that in the z direction, mathematically, ωr/ωz � 1. This means that the motion of
atoms in the z direction is essentially frozen and is governed by the ground-state wavefunction
of the corresponding harmonic oscillator. Hence, the excitations can propagate only in the
(r, θ) plane. According to the above assumption, we can set [9]

�(r, θ, z, t) = G0(z)�(r, θ, t), (3)

where G0(z) = exp(−z2/2) is the ground-state wavefunction of the 1D harmonic oscillator
with the potential z2/2 in the z direction. Then, substituting equation (3) into equation (1), we
obtain
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�, (4)

where Q′ = I0Q is an effective interaction constant with I0 = ∫ ∞
−∞ dz G4

0(z)
/ ∫ ∞

−∞ dz G2
0(z) =

1/
√

2. Because the contribution of the higher-order eigenmodes of the harmonic oscillator in
the z direction is very small and can be safely neglected, so, in deducing equation (4), we have
multiplied equation (1) by G∗

0(z) and then integrated once with respect to z to eliminate the
dependence on z [10, 9]. Now we seek for a solution to equation (4) in the form [9]

�(r, z, t) = A(r, θ, t) exp[−iµt + iφ(r, θ, t)], (5)
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where µ is the chemical potential of the condensate and φ is a phase function contributed from
the excitation. Then, equation (4) reduces to
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A + Q′A3 = 0. (7)

3. The dynamics of the ring dark soliton and discussions

To obtain the nonlinear evolution of the ring dark soliton, we consider the excitation with nearly
cylindrical symmetry, the angle subtended by the wave front in the nearly concentric case is
small. Hence, the independent variables can be stretched as [11, 12] ξ = ε(r − ct), η = ε−1θ

and t = ε3τ , and the dependent variables can be scaled as

A = u0 + ε2(a0 + ε2a1 + · · ·), (8)

φ = ε(φ0 + ε2φ1 + · · ·), (9)

where ε is a smallness ordering parameter characterizing the relative amplitude of the
excitation. When ε → 0, equations (8) and (9) indicate that the condensate background,
i.e., without perturbation, is recovered.

Then, substituting the above expansions into equations (6) and (7) and collecting the
terms in the different powers of ε, we can obtain each nth-order reduced equation. In order
to get insight into the ring dark soliton analytically, we can neglect the slowly varying radial
trapping potential because ωr/ωz is very small (this term will be included in the numerical
simulations). Hence, to the leading order, we have
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with the consideration of equation (12), we have
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The solvability condition for equations (13) and (14) reads
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where α = 3c/u0, β = 1/(8c). Equation (15) is the cylindrical KP equation [11] describing
the small-amplitude ring dark soliton in the radial non-symmetric cylindrical BEC. The last
term on the left-hand side of equation (15) refers to the transverse effect.

If the wave propagates in a radial symmetric cylindrical BEC, the last term on the left-hand
side of equation (15) disappears and the cylindrical KP equation (15) reduces to the cylindrical
KdV equation

∂a0

∂τ
+ αa0

∂a0

∂ξ
− β

∂3a0

∂ξ 3
+

1

2τ
a0 = 0. (16)

This cylindrical KdV equation describes the dynamics of the ring dark soliton in BEC without
the azimuthal effect. The ring dark quasi-solitary wave solution of equation (16) for larger
radius is [13]

a0 = −A
(τ0

τ

)2/3
sech2

{(
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12β

)1/2 (τ0

τ

)1/3
[
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3
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τ

)2/3
τ

]}
, (17)

where A is the amplitude of the ring solitary wave at initial stage τ0. It is clear that equation (17)
describes a ring dark soliton and its amplitude varies according to τ−2/3 law. That is, the
soliton shape, amplitude and phase are varying when the soliton propagates in BEC, which is
confirmed by the experiments as mentioned before. In this case, however, the ring shape is
not deformed as the ring dark soliton propagates.

Equation (15) also indicates that for sufficiently large τ, i.e., for a very broad ring dark
soliton, we have
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∂τ
+ αa0

∂a0

∂ξ
− β
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∂ξ 3
= 0. (18)

This is a one-dimensional KdV equation describing the propagation of a stable planar solitary
wave

a0 = −A sech2
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3
τ

)}
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Now we turn to discuss the solution of a ring dark soliton with azimuthal effect, i.e.,
solution of equation (15). An exact solution of equation (15) can be obtained by using a
suitable variable transformation. In equation (15), the two terms with variable coefficient, i.e.,
1

2τ
a0 and 1

2c
1
τ 2
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∂η2 , can be cancelled if we assume [11, 12]
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Then equation (15) is reduced to the standard KdV
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It is clear from equations (18) and (19) that equation (21) has a travelling wave solution
of the form

a0 = −A sech2
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Therefore, we obtain an exact ring dark solitary wave solution of equation (15) in the
following form:

a0 = −A sech2
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Figure 1. Evolution of ring dark soliton with cos ϕ(0) = 0.76. Top row for ωr/ωz = 0, bottom
row for ωr/ωz = 0, 028. From left to right: t = 30, 40, 50, 60, 80.

Figure 2. Evolution of ring dark soliton with cos ϕ(0) = 1. Top row for ωr/ωz = 0, bottom row
for ωr/ωz = 0, 028. From left to right: t = 50, 60, 70, 80.

It is clear that the amplitude and wave velocity of a ring dark soliton described by
equation (23) are uniquely determined by the parameters of the system and only depend on
the initial conditions. However, we can see from equation (23) that the phase velocity of the
ring dark soliton is angle dependent in the phase. This means that the ring dark solitary wave
described by cylindrical KP equation (15) will be deformed and the snake instability will occur
as time goes on. On the other hand, the cylindrical KP equation (15) describes the dynamics
of the ring dark solitary wave under the azimuthal effect.

Now, we investigate the stability of a ring dark soliton numerically with the effect of
trapping potential in the (x, y) plane. For convenience, we rescale the wavefunction � in
equation (4) by � = φ/

√
Q′, then, equation (4) reduces to

i
∂φ

∂t
=

[
−1

2
∇2 + V (r) + |φ|2

]
φ. (24)
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Equation (24) is integrated numerically by means of the fourth-order Runge–Kutta scheme
in time along with a second-order finite difference discretization in space. The spatial
discretization step used in the simulations is typically (�x,�y) = (0.2, 0.2). The time
step of the integrator is �t = 0.0025. The initial condition used to integrate equation (24)
is [1, 8]

φ(r, 0) = [1 − (ωr/ωz)
2r2/4][cos ϕ(0) tanh Z(r) + i sin ϕ(0)],

where Z(r) = (r −R0) cos ϕ(0), the initial ring radius R0 = 28.9. The depth of the input ring
soliton cos ϕ(0) and the parameter ωr/ωz are varied in simulations. The developments of the
instability of a ring dark soliton for two cases with cos ϕ(0) = 0.76 (shallow ring soliton) and
cos ϕ(0) = 1 (deep ring soliton) are shown in figures 1 and 2, respectively. For each case,
the evolution of the ring dark soliton with the trapping potential (ωr/ωz = 0.028) and without
the trapping potential (ωr/ωz = 0) are also considered. It is clear that, as time goes on, the
azimuthal perturbation is developed, the ring dark soliton is deformed and the snake instability
sets in finally for all cases. It is important to note that the ring dark soliton with trapping
is more unstable to transverse perturbation, i.e., the trapping potential enhances the snaking
instability. On the other hand, the development of the snake instability of the ring dark soliton
without the trapping is postponed. We can also find from figures 1 and 2 that the expanding
(for cos ϕ(0) = 0.76, sin ϕ(0) = −0.65 < 0) or contracting (for cos ϕ(0) = 1, sin ϕ(0) = 0)

rate of a ring dark soliton with trapping is slower than that without the trapping.
In summary, the evolution of a ring dark soliton in a BEC with thin disc-shaped potential

is studied by both perturbation method and numerical method. Theoretical analysis shows
that the ring dark soliton in the BEC with azimuthal effect is governed by a cylindrical KP
equation, while the ring dark soliton in the BEC without azimuthal effect is governed by a
cylindrical KdV equation. The reduction to the cylindrical KP or KdV equation may be useful
to understand the dynamics of the ring dark soliton and will help to get a deeper insight into
the physics of the ring dark soliton.
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